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Problem formulation

Instead of specifying actions a which determine the state transition probabilities p(x" [ x, a)
here the controller specifies the state transition probabilities u(x’ | x) directly.

current state
/ next state
p (z'|x) transition probabilities under passive dynamics
u (2’| x) transition probabilities under controlled dynamics
q(x) state cost, i.e. cost for being in state x

KL (u||p)  control cost, i.e. cost for choosing action u (-|x)

u (¢']x)

p(z'|x)

KL (u(12) 1o (12)) = Eytrou(fs) log




Understanding the KL control cost

biased coins shortest paths

E(cost) =
Ey(q) + KL(ul|p)

0 0.27 0.5
action u (probability of Heads)




Reducing the problem to a linear equation

u* (z'|x) optimal control law
v () optimal cost-to-go function
z(x) = exp(—v(x)) desirability function

Bellman equation:

v(z) =min{q(@)+ KL (ullp) + By |z [v ()] }

u (z'|x) 1 }

p(@]2) T exp (v (@)

=q(x)+ mdn Ex/Nu(,|x) log

= q(x) — log B p(.|z) [exp (—v (2))] + min K L (u||pexp (—v))
Optimal control law: u* (2/|z) < p (2'|7) 2z (2')

Desirability function: 2 (z) = exp (—q (7)) By p(.2)% ()

Vector notation: z = (QPz




Relationship between desirability and control

": sampled from u*(x’ | x)




Summary of results

Let G denote expectation under the passive dynamics: G [z] (z) = Ex/,\,p(.‘x) 2 ()]

Results for different performance criteria:

first-exit

total cost z=-exp(—q) ¢ [7] z (x) given on the boundary

finite-horizon

total cost zt = exp (—qt) Gt [2¢+1] z (x) given at the final time

infinite-horizon

z = exp(c — z unknown average cost ¢
average cost p( Q) g [ ] &

infinite-horizon B o .
discounted cost z =exp(—q) G [z%] discount factor o




Shortest paths

p(2'|z) = random walk on the graph

0, « terminal
q(z) = -

p, x non-terminal
For large p the optimal cost-to-go v, (x) is dominated by the state cost,
thus:

l[im op ()

— shortest path from = to a terminal state
pP—C  p

LN
Ol

Performance on the graph of internet routers as of 2003:
190914 nodes, 609066 edges, data from caida.org.

When the approximation was rounded down to the

approximation

nearest integer, all shortest paths were recovered exactly.
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Embedding of traditional MDPs

Consider a traditional MDP with actions a, transition probabilities p (z'|x, a)
and costs £ (z,a). This MDP can be embedded in our family by choosing
q (x) and p (z'|x) such that for every (x,a) we have

q(z) + KL (B (|z,a)|lp(-]x)) = £(z,a)

Computing g and p requires solving a linear equation at every .

machine repair example

optimal cost-to-go approximation

approximation s,
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time step 90



Oftf-policy reinforcement learning

The linear Bellman equation 2 (z) = exp(—q(x)) Ey/p(.|z)? (¥) yields
the following stochastic approximation method (Z-learning):

Z(r) «— mpexp(—qr) 2 (wp41) + (1 — mg) 2 ()

This learning rule is simpler and more efficient than Q-learning:

Q (wt, at) — (ft + min Q (we41, a’)) + (1= ny) Q (wt, az)

grid world example
Q random

Q greedy
Z random
Z greedy
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Continuous analog

Control-affine diffusions with control-quadratic cost rate:

dynamics: dx = a(x)dt + B (x) (udt + cdw)

1
cost rate: ¢ (x,u) = q(x) A |11||2
o

The optimal control law is u* (x) = —c?B (X)T vx (x). The minimized
HJB equations expressed in terms of the desirability function z = exp (—v)
are

first-exit total cost: 0=L[z] —qz

finite-horizon total cost: —zt = L[z] — qz

infinite-horizon average cost: —Xz =L][z] —qz

infinite-horizon discounted cost: log (2%¥)z = L[z] — gz

2
L is the generator of the uncontrolled diffusion: £ [z] = aTzXqL% tr (BBTZXX)




Novel discretization of continuous problems
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Function approximation methods

Define the function approximator

2(x 0, w) = ) wifi(x)

where f; are Gaussians with means and Covariances contained in the pa-
rameter vector 0. Choose a set of collocation states {x;,} at which the
Bellman equations will be enforced. Define the matrices F'(0), G (0) with
elements F,,; = f; (x) and G,,; = exp(—q (%)) G [f;] (x1). The problem
becomes

first-exit total cost: FO)w=G(0O)w+Db

infinite-horizon average cost: AF(O)w =G (0)w

Solving for A\, w is a linear problem. 6@ can be optimized using Gauss-
Newton. The collocation set can span the entire state space, or just
the region where good solutions are expected. Automatic improvement

of the collocation set is also possible (resembling Differential Dynamic
Programming).




Example: car on a hill

40000 discrete states 40 adaptive bases
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Example: inverted pendulum

40000 discrete states 40 adaptive bases

velocity
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position



Compositionality of optimal control laws

Consider a composite first-exit problem with final/boundary cost in the

form

b(x) = —log (Y, wkexp (—by (x)))

where b;. are the final costs for component problems whose solutions z;. (x)
we already have. Then the solution to the composite problem is simply

2(x) =), wpzg (x)

More generally, consider the " Green's function” relating the vectors z; and
z of desirabilities at interior and boundary states:

Z;r = MZ]—I—NZB
z; = (I— M) 'Nzg

Replace exp (—by, (x)) with the left singular vectors of (I — M) 1 N.
This can provide a universal basis for approximating any composite cost.




Linear-quadratic primitives




Singular vectors of Green’s function
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Duality with Bayesian inference

In the finite horizon we can show that the optimal control law is

u (x]x) = exp (—a (%) p (x'|x)

Thus the probability of a trajectory xg, x1, - - Xt '

2y (%)
20 (%0)
The latter expression equals the probability of a (hidden) trajectory in a

], uf (xevalxe) = L1, exp (—at (x¢)) p (x¢41/x¢)

partially observed system, with dynamics p and emission probabilities which

satisfy

py (yt|x) = exp (—q¢ (X))

Thus the state distribution under the optimal control law corresponds to
the posterior distribution in a Bayesian estimation problem. The desirability

function corresponds to the backward filtering density.




control

estimation

Summary of duality results

continuous

dx = a(x)dt + B (x) (udt + dw)

0(x,u,t) = q(x,t) + 5 |[u])°
Is dual to

dx = a(x)dt + B (x) dw
dy = h(x)dt + dv

when

q¢(x,t) =3 |h(x)|?—h(x)" y()

discrete

X¢+1 ~ u(+]Xt)

b (x,u) = q¢ (x) + KL (u||p)

Is dual to

X¢41 ~ D (+|x¢)

Yt ~ Dy ('|Xt)

when

qt (x) = — log (py (¥t/x))




Belief networks for estimation and control
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Characterizing the most likely trajectory

The probability of a given trajectory under the optimal control law is

Ht exp (—qt (x¢)) p (X¢+1/x¢t)

Maximizing probability is equivalent to minimizing negative log-probability:

>, at (xt) — log (p (x¢41/%t))

This can be interpreted as the total cost for a deterministic optimal control
problem with control cost — log (p (x¢11|%¢)).

In the diffusion case, the most probable trajectory equals the optimal tra-
jectory for a deterministic problem with modified cost rate:

¢(x,u) = £(x,u) + ; log (det (X (x))) + A2t div (a (x))




Example

dx = a(x) dt + u dt + sigma dw

q(x)=5x2
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sigma = 0.6
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Inverse optimal control

Suppose we are given a dataset of state transitions D = {zy,z),} 1
generated by an optimally-controlled system. Our goal is to infer the cost

q (x) for which the system is optimal. The passive dynamics p (z'|x) are
known.

This can be done by inferring v (x), computing z (z) = exp (—v (x)), and
substituting in the linear Bellman equation to obtain ¢ (x).

It can be shown that the negative log-likelihood is
Lw()=) a(@)v(z)+> b(z)log) p (az’\x) exp (—v (az’))
I xr QZ‘,

where b (-) and a (-) are the histograms of x,, and z/, respectively.

The function L is convex in v. Numerically, the Hessian H turns out to
be diagonally dominant. This yields an efficient quasi-Newton method:

v «— v —grad ./diag (H)




Example: randomly-generated problems

=3

1T Umax —

R2 between q and q
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data points per state

quasi-Newton iterations
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