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Problem formulation

Instead of specifying actions a which determine the state transition probabilities p(x’|x, a) 
here the controller specifies the state transition probabilities u(x’|x) directly.

  

  






    






    

          

          

       






 



Understanding the KL control cost
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Reducing the problem to a linear equation





  

    

       

 

   



     







    












 
 



  



   












   

   




 










       




    



Relationship between desirability and control

z(x’) = exp(-v(x’))

p(x’|x)

u*(x’|x) ~ p(x’|x) z(x’)

x’ : sampled from u*(x’|x) x



Summary of results

            






    


 

          


 

           


 

         


 

       



Shortest paths

.2

.6

1 15
1

15

shortest path length
ap

pr
ox

im
at

io
n

Performance on the graph of internet routers as of 2003:
190914 nodes, 609066 edges, data from caida.org.

When the approximation was rounded down to the
nearest integer, all shortest paths were recovered exactly.

      

  


  
  

             






 


        



Embedding of traditional MDPs
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Off-policy reinforcement learning
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Continuous analog
     

        

       





             
            


       
       
       

         

           











Novel discretization of continuous problems
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Function approximation methods
   

   




 

           

            
             

              


         

       

            

           

        

         





Example: car on a hill
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Example: inverted pendulum
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Compositionality of optimal control laws
         



    



   



            

           

  



 

          

       

   

   

            

          



Linear-quadratic primitives
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Singular vectors of Green’s function
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Duality with Bayesian inference

            






    




 




 

          



  








 



    

           

         



     

          

         

      



Summary of duality results
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Belief networks for estimation and control
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Characterizing the most likely trajectory

           



    

       



    

            

       

           

        

     



    




  



Example
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Inverse optimal control
          


 




           

           








               
         

        

   



    




  


















             

             

        

     



Example: randomly-generated problems

q

q̂

z

ẑ
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